How Close to Regular Must a Semicomplete Multipartite Digraph Be to Secure Hamiltonicity?

نویسنده

  • Anders Yeo
چکیده

Let D be a semicomplete multipartite digraph, with partite sets (called color classes) V 1 ; V 2 ; : : :; V c , such that jV 1 j jV 2 j : : : jV c j. Deene f(D) = jV (D)j ? 3jV c j + 1 and g(D) = jV (D)j?jVc?1j?2jVcj+2 2. We deene the irregularity i(D) of D to be maxjd + (x) ? d ? (y)j over all vertices x and y of D (possibly x = y). We deene the local irregularity i l (D) of D to be maxjd + (x)?d ? (x)j over all vertices x of D and we deene the global irregularity of D to be i g (D) = maxfd + (x); d ? (x) : x 2 V (D)g ? minfd + (y); d ? (y) : y 2 V (D)g. In this paper we show that if i g (D) g(D) or if i l (D) minff(D); g(D)g then D is Hamiltonian. We furthermore show how this implies a theorem which generalizes two results by Volkmann and solves a stated problem and a conjecture from 5]. Our result also gives support to the conjecture from 5] that all diregular c-partite tournaments (c 4) are pancyclic. Finally we show that our result in some sense is best possible, by giving an innnite class of non-Hamiltonian semicomplete multipartite digraphs, D, with i g (D) = i(D) = i l (D) = g(D) + 1 2 f(D) + 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sufficient condition for a semicomplete multipartite digraph to be Hamiltonian

A digraph obtained by replacing each edge of a complete n-partite (n 2:: 2) graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete n-partite digraph or semicomplete multipartite digraph (abbreviated to SMD). In this paper we show the following result for a semicomplete multipartite digraph of order p with the partite sets VI, 112, ... , Vn. Let r...

متن کامل

Sufficient Conditions for a Digraph to be Supereulerian

A (di)graph is supereulerian if it contains a spanning, connected, eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we give a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the...

متن کامل

Suucient Conditions for Semicomplete Multipartite Digraphs to Be Hamiltonian Dedicated to Professor Dr. Horst Sachs on His 70th Birthday

A semicomplete multipartite digraph is obtained by replacing each edge of a complete multipartite graph by an arc or by a pair of two mutually opposite arcs. Very recently, Yeo 7] proved that every regular semicomplete multipartite digraph is Hamiltonian. With this, Yeo connrmed a conjecture of C.-Q. Zhang 8]. In the rst part of this paper, a generalization of regularity is considered. We exten...

متن کامل

Strongly quasi-Hamiltonian-connected semicomplete multipartite digraphs

A semicomplete multipartite or semicomplete c-partite digraph D is a biorientation of a c-partite graph. A semicomplete multipartite digraph D is called strongly quasiHamiltonian-connected, if for any two distinct vertices x and y of D, there is a path P from x to y such that P contains at least one vertex from each partite set of D. In this paper we show that every 4-strong semicomplete multip...

متن کامل

Kings in semicomplete multipartite digraphs

A digraph obtained by replacing each edge of a complete p-partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicom-plete p-partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r-king is a vertex q such that every vertex in D ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1999